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Section I

Questions in this section are multiple-choice.

Record the single best answer for each question on the provided answer sheet.

1. Which sum is equal to
20∑

k=1

(3k + 1)?

(A) 1 + 2 + 3 + . . . + 20

(B) 1 + 4 + 7 + . . . + 61

(C) 4 + 5 + 6 + . . . + 61

(D) 4 + 7 + 10 + . . . + 61

2. What is the remainder when P (x) = −6x3 − 2x2 + 3x + 10 is divided by x + 2?

(A) −44

(B) −40

(C) 40

(D) 44

3. What is the angle between the vectors a
˜

=

[
14
5

]
and b

˜
=

[
11
10

]
, correct to the nearest

degree?

(A) 23◦

(B) 28◦

(C) 62◦

(D) 67◦

4. What is the value of lim
θ→0

tan θ

2θ
?

(A) 0

(B)
1

2

(C) 2

(D) The limit does not exist.
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5. What is the natural domain of the function f(x) = sin−1
(
1 − x2

)
?

(A) −
√

2 ≤ x ≤
√

2

(B) −1 ≤ x ≤ 1

(C) 0 ≤ x ≤ 1

(D) 0 ≤ x ≤
√

2

6. What is the exact value of

∫ 2

1

dx√
4 − x2

?

(A)
π

6

(B)
π

4

(C)
π

3

(D)
π

2

7. What is the constant term in the binomial expansion of

(
4x2 − 1

x

)9

?

(A) −344 064

(B) −5376

(C) 84

(D) 5376

8. The displacement, x, of a particle at time t ≥ 0 is given by

x = 7 sin 3t + 24 cos 3t.

What is the maximum velocity of the particle?

(A) 25

(B) 51

(C) 75

(D) 225
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9. The diagram below shows the direction field (slope field) of a differential equation and
some of the solution curves.

−2π −

3π

2
−π −

π

2
0

π

2
π

3π

2
2π

−2π

−

3π

2

−π

−

π

2

0

π

2

π

3π

2

2π

x

y

Which differential equation best matches this direction field?

(A)
dy

dx
=

sin x + 1

cos y + 1

(B)
dy

dx
=

sinx + 1

cos y − 1

(C)
dy

dx
=

sinx − 1

cos y + 1

(D)
dy

dx
=

sin x− 1

cos y − 1
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x

y

O

1

x
2
− y

2
= 1

10.

The diagram above shows the right branch of the hyperbola x2 − y2 = 1.

Three pairs of parametric equations are listed below:

I

{

x = sec t

y = tan t
for −π

2
< t < π

2
.

II

{

x =
√

1 + t2

y = t
for −∞ < t < ∞.

III

{

x = t

y =
√

t2 − 1
for 1 ≤ t <∞.

Which of these pairs of equations give a correct representation of the curve shown in
the diagram?

(A) I and II only

(B) I and III only

(C) II and III only

(D) I, II and III

End of Section I

The paper continues in the next section
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Section II

This section consists of long-answer questions.

Marks may be awarded for reasoning and calculations.

Marks may be lost for poor setting out or poor logic.

Start each question in a new booklet.

QUESTION ELEVEN (15 marks) Start a new answer booklet. Marks

(a) 3Solve
x

x − 3
≤ 2.

(b) 2Find

∫
sin2 5x dx.

x

y

A(−2, 5)

B(6,−7)

P

O

NOT TO SCALE

(c)

The diagram above shows a Cartesian plane where the points A and B have the
position vectors

−→
OA = −2i

˜
+ 5j

˜
and

−−→
OB = 6i

˜
− 7j

˜
, respectively, and O is the origin.

(i) 1Find
−→
AB in component form.

(ii) 2The point P lies on the interval AB with AP : PB = 3 : 1. Use vector methods
to find the coordinates of P .

(d) 3Use the substitution t = tan θ

2 to solve sin θ + 2cos θ = 2 for 0◦ ≤ θ ≤ 360◦. Give
your answers correct to the nearest degree.

The question continues on the next page
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QUESTION ELEVEN (Continued)

(e) A container of ice cream is stored in a freezer at a temperature of −18◦C. Before
serving, the ice cream is removed from the freezer and left on the kitchen bench at an
ambient temperature of 22◦C.

Let T be the temperature of the ice cream in degrees Celsius. Once the ice cream has
been removed from the freezer, T increases according to the differential equation

dT

dt
= k(22 − T ),

where k is a positive constant and t is the number of minutes after the ice cream was
removed from the freezer.

(i) 1Given that T = 22 − Ae−kt is a solution to the differential equation, determine
the value of A.

(ii) 2Twenty minutes after removal from the freezer, the temperature of the ice cream
is −8◦C. Determine the value of k. Give your answer correct to three significant
figures.

(iii) 1It is accepted that ice cream is most palatable when served at −12◦C. How long
should the ice cream have been left on the bench to reach this temperature before
serving? Give your answer correct to the nearest minute.
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QUESTION TWELVE (15 marks) Start a new answer booklet. Marks

(a) 1How many different ten-letter arrangements can be made using the letters of the word
TABLECLOTH?

(b) The diagram below shows the graph of the function y = g(x). This function has
zeroes at x = 0 and x = 2 and a global minimum at (1,−1).

x

y

O

y = g(x)

2

(1,−1)

On separate axes, draw neat sketches of the functions listed below. Clearly indicate
the location of any asymptotes, any maxima or minima, and any intercepts with the
coordinate axes.

(i) 2y =
1

g(x)

(ii) 2y = g (|x|)

(c) The region under the curve y = ln(x + 1) for 0 ≤ x ≤ 4 is shown in the diagram
below. It is rotated about the x-axis to form a solid of revolution.

x

y

y = ln(x+ 1)

4O

(i) 1Let V be the volume of the solid of revolution. Write down a definite integral
which, if evaluated, would give the exact value of V .

(ii) 2Use the trapezoidal rule with three function values to estimate V . Give your
answer correct to one decimal place.

The question continues on the next page
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QUESTION TWELVE (Continued)

(d) A cubic function can have:

x

y

two stationary points;

x

y

one stationary point;

x

y

or no stationary points.

Consider the cubic function f(x) = ax3 + bx2 + cx + d, where a, b, c and d are real
numbers and a 6= 0.

(i) 2Show that the x-coordinates of the stationary points of y = f(x) satisfy the
equation

x =
−b ±

√
b2 − 3ac

3a
.

(ii) 1Give an example of a cubic function that has no stationary points.

(e) Consider the sequence Tn = 2n + 2n for integers n ≥ 1.

(i) 1Find the first three terms of the sequence.

(ii) 3Use mathematical induction to show that, for n ≥ 1,

T1 + T2 + . . . + Tn = n2 + n − 2 + 2n+1.
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QUESTION THIRTEEN (15 marks) Start a new answer booklet. Marks

(a) 2Find
d

dx

(
cos−1(3x2)

)
.

(b) 2Pupils completing Legal Studies for the NSW HSC are awarded an integer mark
between zero and 100, inclusive. In the year 2021, a total of 10 935 pupils completed
Legal Studies. What is the largest number of pupils that were guaranteed to receive
the same mark?

(c) 2The vectors u
˜

and v
˜

are perpendicular. If |u
˜
| = 8 and |v

˜
| = 3, evaluate |u

˜
− 2v

˜
|.

(d) The displacement of a projectile fired from the origin O has a horizontal component
x and a vertical component y.

x

y

V

O

α

R

The equations of motion are

x = V t cosα,

y = V t sinα − 5t2,

where V is the initial speed in metres per second, α is the angle of projection as in the
diagram, and t is the time in seconds. The range, R, is the total horizontal distance
travelled by the projectile.

(i) 2Derive an expression for R in terms of V and α.

(ii) 3The maximum range for a given value of V is Rmax. Show that Rmax occurs when
α = 45◦ and obtain a fully simplified expression for it.

(iii) 1Show that if the projectile is to hit a target 12km away, it must be launched at a
speed faster than the speed of sound in air, which is 343m/s.

(e) 3Solve the separable differential equation
dy

dx
= x(y2 +4) if the solution passes through

the point (0, 2). Express your solution as a function of x.
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QUESTION FOURTEEN (15 marks) Start a new answer booklet. Marks

(a) The mass of a tyrannosaurid dinosaur as a function of its age can be modelled by a
logistic equation of the form

M(t) =
a

1 + e−b(t−c)
+ k.

In this equation:

M is the mass of the dinosaur in kilograms;

t is the age of the dinosaur in years; and

a, b, c and k are positive constants.

For the dinosaur Tyrannosaurus rex (T. rex), palæontologists have obtained estimates
of the constants a, b, c and k, which are shown in the table below.

Constant Value

a 5 649

b 0·55

c 16·2

k 5

Erickson GM, Makovicky PJ, Currie PJ, Norell MA,
Yerby SA, et al. (2004) Gigantism and comparative
life-history parameters of tyrannosaurid dinosaurs.
Nature 430: 772–775.

The diagram below shows the growth curve of T. rex for the values given in the table.
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Logistic Growth Curve of Tyrannosaurus rex

The question continues on the next page
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QUESTION FOURTEEN (Continued)

(i) 1From the diagram of the T. rex growth curve, write down an approximate value
for the limiting mass.

(ii) 1Show that the instantaneous growth rate, G(t) =
dM

dt
, is given by

G(t) =
abe−b(t−c)

[
1 + e−b(t−c)

]2 .

(iii) 4Show that G(t) has a maximum when t = c.

(iv) 1Hence, or otherwise, determine the maximum growth rate of T. rex in
kilograms per year predicted by the model. Give your answer correct to the
nearest 10kg/year.

(b) The hyperbolic sine and cosine functions, sinhx and cosh x, are defined as

sinhx =
1

2

(
ex − e−x

)
,

cosh x =
1

2

(
ex + e−x

)
.

(i) 1Show that
d

dx
sinhx = cosh x.

(ii) 1Hence explain why f(x) = sinhx has an inverse function defined for all real x.

(iii) 1Prove the identity cosh2 x− sinh2 x = 1.

(iv) 3Show that the inverse function of f(x) = sinhx is given by

f−1(x) = ln
(
x +

√
x2 + 1

)
.

(v) 2Hence use the substitution x = sinhu to deduce that
∫

1√
x2 + 1

dx = ln
(
x +

√
x2 + 1

)
+ C.

END OF PAPER
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Section I

(1) The first term in the sequence is 4, the last is 61 and the common difference is 3.
Answer: D

(2)

P (−2) = −6(−2)3 − 2(−2)2 + 3(−2) + 10

= 48− 8− 6 + 10

= 44

Answer: D

(3) If θ is the angle between the vectors then

cos θ =
a∼ · b∼
|a∼||b∼|

=
14× 11 + 5× 10√
142 + 52

√
112 + 102

=
204√

221
√
221

=
204

221

∴ θ = cos−1

(
204

221

)
= 22.61986

Answer: A

(4)

lim
θ→0

tan θ

2θ
=

1

2
lim
θ→0

tan θ

θ

=
1

2
× 1

Answer: B

(5) The domain is given by

−1 ≤ 1− x2 ≤ 1

−2 ≤ −x2 ≤ 0

0 ≤ x2 ≤ 2

∴ −
√
2 ≤ x ≤

√
2

Answer: A



(6) ∫ 2

1

dx√
4− x2

=
[
sin−1

(x
2

)]2
1

= sin−1 1− sin−1 1

2

=
π

2
− π

6

=
π

3

Answer: C

(7) The nth term in the binomial expansion is

9Cn

(
4x2

)n (−1

x

)9−n

=9 Cn4
n (−1)9−n x2n−(9−n)

=9 Cn4
n (−1)9−n x3n−9

Thus the constant term is when 3n− 9 = 0. That is, when n = 3. In this case, the
coefficient is

9C3 × 43 (−1)6 = 84× 43

= 5376

Answer: D

(8) Using the auxilliary angle method,

x = 7 sin 3t+ 24 cos 3t

=
√
72 + 242

(
7√

72 + 242
sin 3t+

24√
72 + 242

cos 3t

)
= 25

(
7

25
sin 3t+

24

25
cos 3t

)
= 25 sin(3t+ θ),

where θ = sin−1 24
25
.

Differentiating with respect to time to find the velocity,

v = 75 cos(3t+ θ),

The maximum velocity is 75.

Answer: C

(9) Note that the tangents are horizontal along the lines x = π
2
and x = −3π

2
. This is

consistent with a numerator of sinx− 1, i.e., (C) or (D). Secondly, the tangents
are vertical along the lines y = ±π, which is consistent with a denominator of
cos y + 1. That is, the answer is (C).

Answer: C

Page 2



(10) I and II parameterize the curve correctly; III only yields positive y values, and
thus only gives the top half of the curve.

Answer: A

Answer Table

1 D

2 D

3 A

4 B

5 A

6 C

7 D

8 C

9 C

10 A
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Section II

QUESTION ELEVEN (15 Marks)

(a) Firstly note that x ̸= 3. Multiplying
both sides by (x− 3)2,

(x− 3)2 × x

x− 3
≤ 2× (x− 3)2

x(x− 3) ≤ 2(x− 3)2

x(x− 3)− 2(x− 3)2 ≤ 0

(x− 3)[x− 2(x− 3)] ≤ 0

(x− 3)(6− x) ≤ 0

x

y

3 6

y = (x− 3)(6− x)

The solution is x < 3 or x ≥ 6.

(b) From the reference sheet,∫
sin2 5x dx =

∫
1

2
(1− cos 10x) dx

=
1

2

(
x− 1

10
sin 10x

)
+ C

=
x

2
− sin 10x

20
+ C

(c) (i)

−→
AB =

−−→
OB −

−→
OA

= (6i∼ − 7j
∼
)− (−2i∼ + 5j

∼
)

= 8i∼ − 12j
∼

(ii)

−→
OP =

−→
OA+

3

4

−→
AB

= −2i∼ + 5j
∼
+

3

4
(8i∼ − 12j

∼
)

= 4i∼ − 4j
∼

The coordinates of P are (4,−4).

(d) If t = tan θ
2
, then, from the reference sheet, sin θ = 2t

1+t2
and cos θ = 1−t2

1+t2
. Thus

2t

1 + t2
+

2(1− t2)

1 + t2
= 2

2t+ 2(1− t2) = 2(1 +−t2)

2t+ 2− 2t2 = 2 + 2t2

4t2 − 2t = 0

2t(2t− 1) = 0

Page 4



So t = 0 or t = 1
2
.

If t = 0,

θ

2
= 0◦, 180◦

θ = 0◦, 360◦

If t = 1
2
,

θ

2
= 26.565 . . .◦

θ = 53◦ (to nearest degree)

Thus the solutions are θ = 0◦, 53◦, 360◦.

NOTE: this is the rounding question.

(e) (i) When t = 0, T = −18, so

−18 = 22− Ae0×k

∴ A = 40

(ii) When t = 20, T = −8, so

−8 = 22− 40e−20k

40e−20k = 30

e−20k = 0.75

k = − ln(0.75)

20
≈ 0.0144 (to 3 sig. fig.)

(iii) If T = −12,

−12 = 22− 40e−kt

40e−kt = 34

e−kt = 0.85

t = − ln(0.85)

k
≈ 11 min (to nearest minute.)

Page 5



QUESTION TWELVE (15 Marks)

(a) There are two L’s and two T’s, so the number of arrangements is given by

10!

2!× 2!
= 907 200

(b) (i)

x

y

y =
1

g(x)

2(1,−1)

x = 2x = 0

y = 0

(ii)

x

y
y = g(|x|)

2−2

(1,−1)(−1,−1)

(0, 0)

(c) (i) The integral is

V =

∫ 4

0

π [ln(x+ 1)]2 dx

Page 6



(ii) Let f(x) = π [ln(x+ 1)]2, and note that h = 2.

V ≈ h

2
[f(0) + 2f(2) + f(4)]

=
2

2

[
π (ln(1))2 + 2π (ln(3))2 + π (ln(5))2

]
= π

[
2 (ln(3))2 + (ln(5))2

]
= 15.7 (1 d.p.)

(d) (i)

f(x) = ax3 + bx2 + cx+ d

f ′(x) = 3ax2 + 2bx+ c

If f ′(x) = 0, 3ax2 + 2bx+ c = 0. Applying the quadratic formula,

x =
−2b±

√
(2b)2 − 4(3a)(c)

6a

=
−2b±

√
4b2 − 12ac

6a

=
−2b± 2

√
b2 − 3ac

6a

=
−b±

√
b2 − 3ac

3a
,

as required.

(ii) If the cubic has no stationary points then b2 − 3ac < 0. For instance, the
values b = 0, a = 1, c = 1 will work and thus the cubic y = x3 + x has no
stationary points.

(e) (i)

T1 = 2(1) + 21 = 4

T2 = 2(2) + 22 = 8

T3 = 2(3) + 23 = 14

(ii) RTP: T1 + T2 + T3 + · · ·+ Tn = n2 + n− 2 + 2n+1 for n ≥ 1. (∗)
For n = 1,

LHS(∗) = T1

= 4 from part (i)

RHS(∗) = 12 + 1− 2 + 21+1

= 4

Thus (∗) is true for n = 1.

Suppose that (∗) is true for an arbitrary positive integer, n = k.

T1 + T2 + T3 + · · ·+ Tk = k2 + k − 2 + 2k+1

Page 7



Then, by the inductive hypothesis,

T1 + T2 + T3 + · · ·+ Tk + Tk+1 = (k2 + k − 2 + 2k+1) + Tk+1

Since Tk+1 = 2(k + 1) + 2k+1,

T1 + T2 + T3 + · · ·+ Tk+1 = k2 + k − 2 + 2k+1 + 2(k + 1) + 2k+1

= k2 + k − 2 + 2k + 2 + 2× 2k+1

= (k2 + 2k + 1) + (k + 1)− 2 + 2(k+1)+1

= (k + 1)2 + (k + 1)− 2 + 2(k+1)+1

So if (∗) is true for k, it is true for k + 1, as well. Hence the result follows by
mathematical induction.
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QUESTION THIRTEEN (15 Marks)

(a)

d

dx

(
cos−1(3x2)

)
= − 1√

1− (3x2)2
× 6x

= − 6x√
1− 9x4

(b) The pupils are the“ pigeons” and the possible marks are the “pigeonholes”. There
are 101 different marks that can be obtained (0, 1, 2, 3 . . . , 100). Now

10 935 = 108× 101 + 27

Thus, by the PHP, there must be at least 109 Legal Studies pupils who received
the same mark.

(c)

|u∼ − 2v∼|
2 = (u∼ − 2v∼) · (u∼ − 2v∼)

= u∼ · u∼ − 4u∼ · v∼ + 2v∼ · v∼
Since u∼ and v∼ are perpendicular, u∼ · v∼ = 0. Thus

|u∼ − 2v∼|
2 = |u∼|

2 + 4|v∼|
2

= 64 + 4× 9

= 100

∴ |u∼ − 2v∼| = 10

(d) (i) If y = 0, then

V t sinα− 5t2 = 0

t(V sinα− 5t) = 0

So the time of flight is t =
V sinα

5
.

Substiuting t =
V sinα

5
into x,

R = V cosα× V sinα

5

=
V 2 sinα cosα

5

(ii) Using the double angle formula,

R =
V 2 × 2 sinα cosα

10

=
V 2 sin 2α

10

The maximum value of R is when sin 2α = 1, which occurs when 2α = 90◦,

so α = 45◦, and Rmax =
V 2

10
.
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(iii) If Rmax = 12 000,

12 000 =
V 2

10
V 2 = 120 000

∴ V =
√
120 000

≈ 346.4102 > 343

(e)

dy

dx
= x(y2 + 4)∫

1

y2 + 4
dy =

∫
x dx

1

2
tan−1

(y
2

)
=

x2

2
+ C

tan−1
(y
2

)
= x2 +D

Since y = 2 when x = 0,

tan−1(1) = D

∴ D =
π

4

tan−1
(y
2

)
= x2 +

π

4

y = 2 tan
(
x2 +

π

4

)
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QUESTION FOURTEEN (15 Marks)

(a) (i) From the graph, the limiting mass is approximately 5500 kg.

(ii)

M =
a

1 + e−b(t−c)
+ k

= a
(
1 + e−b(t−c)

)−1
+ k

∴ G(t) =
dM

dt
= −a(1 + e−b(t−c))−2 ×−be−b(t−c)

=
abe−b(t−c)

[1 + e−b(t−c)]
2

(iii)

G(t) =
abe−b(t−c)

[1 + e−b(t−c)]
2

∴ u = abe−b(t−c), u′ = −ab2e−b(t−c)

v =
(
1 + e−b(t−c)

)2
, v′ = −2be−b(t−c)

(
1 + e−b(t−c)

)
So

dG

dt
=

u′v − uv′

v2

=
−ab2e−b(t−c)(1 + e−b(t−c))2 − abe−b(t−c) ×−2be−b(t−c)

(
1 + e−b(t−c)

)
[1 + e−b(t−c)]4

=

(
1 + e−b(t−c)

)
[−ab2e−b(t−c)(1 + e−b(t−c)) + 2ab2(e−b(t−c))2]

[1 + e−b(t−c)]4

=
ab2e−b(t−c)[−(1 + e−b(t−c)) + 2e−b(t−c)]

[1 + e−b(t−c)]3

=
ab2e−b(t−c)[e−b(t−c) − 1]

[1 + e−b(t−c)]3

If dG
dt

= 0, then e−b(t−c) − 1 = 0, which implies that t = c.

Note that the factors ab2e−b(t−c) and [1 + e−b(t−c)]3 are both positive. Thus
the sign of dG

dt
changes only if [e−b(t−c) − 1] changes sign.

If t < c, then −b(t− c) > 0, thus e−b(t−c) − 1 > 0 and so G′(t) > 0. Similarly,
if t > c then e−b(t−c) − 1 < 0 and so G′(t) < 0.

Hence G(t) has a global maximum when t = c.
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(iv)

G(c) =
abe−b(c−c)

[1 + e−b(c−c)]
2

=
ab

4

=
5649× 0.55

4
= 776.7375

≈ 780 kg/year

(b) (i)

d

dx
sinhx =

d

dx

(
1

2
(ex − e−x)

)
=

1

2
(ex − (−1)× e−x)

=
1

2
(ex + e−x)

= coshx

(ii) Since
d

dx
sinhx = coshx the y = sinhx is increasing for all real x and thus

has an inverse function.

(iii)

cosh2 x− sinh2 x =

[
1

2
(ex + e−x)

]2
−
[
1

2
(ex − e−x)

]2
=

1

4
(e2x + 2ex × e−x + e−2x)− 1

4
(e2x − 2ex × e−x + e−2x)

=
1

4
(e2x + 2 + e−2x)− 1

4
(e2x − 2 + e−2x)

= 1

(iv) If x = sinh y, then

x =
1

2
(ey − e−y)

2x = ey − 1

ey

Let ey = u, then

2x = u− 1

u
2ux = u2 − 1

u2 − 2ux+ x2 = x2 + 1

(u− x)2 = x2 + 1

u− x = ±
√
x2 + 1

u = x±
√
x2 + 1
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However, since u = ey > 0, we take the positive square root only, and thus

ey = x+
√
x2 + 1

y = ln
(
x+

√
x2 + 1

)
∴ f−1(x) = ln

(
x+

√
x2 + 1

)
NOTE: this can also be proven from the definition of an inverse function, but
both parts need to be shown. That is, both f ◦ f−1(x) = x and
f−1 ◦ f(x) = x must be clearly demonstrated.

(v) If x = sinhu then

dx

du
= coshu

∴ dx = coshu du

so∫
1√

x2 + 1
dx =

∫
1√

1 + sinh2 u
× coshu du

=

∫
1√

cosh2 u
× coshu du (from (b)(iii))

=

∫
1 du (Note that coshu > 0 for all real u)

= u+ C

If x = sinhu, then u = sinh−1 x. From b(iv), sinh−1 x = ln
(
x+

√
x2 + 1

)
.

Thus ∫
1√

x2 + 1
dx = ln

(
x+

√
x2 + 1

)
+ C,

as required.
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