SYDNEY GRAMMAR SCHOOL

		CA	NDIDA	ATE NU	IMBER

2022 Trial Examination

Form VI Mathematics Extension 1

Monday 15th August 2022

12:50pm

General Instructions	 Reading time — 10 minutes Working time — 2 hours Attempt all questions. Write using black pen. Calculators approved by NESA may be used. A loose reference sheet is provided separate to this paper.
Total Marks: 70	
	 Section I (10 marks) Questions 1–10 This section is multiple-choice. Each question is worth 1 mark. Record your answers on the provided answer sheet.
	 Section II (60 marks) Questions 11–14 Relevant mathematical reasoning and calculations are required. Start each question in a new booklet.
Collection	 Write your candidate number on this page, on each booklet and on the multiple choice sheet. If you use multiple booklets for a question, place them inside the first booklet for the question. Arrange your solutions in order. Place everything inside this question booklet.
Checklist	

- Reference sheet
- Multiple-choice answer sheet
- 4 booklets per boy
- Candidature: 131 pupils

Writer: CWG

	Marks
Multiple Choice	
Question 11	
Question 12	
Question 13	
Question 14	
TOTAL	

Section I

Questions in this section are multiple-choice. Record the single best answer for each question on the provided answer sheet.

- 1. Which sum is equal to $\sum_{k=1}^{20} (3k+1)?$
 - (A) $1 + 2 + 3 + \ldots + 20$
 - (B) $1 + 4 + 7 + \ldots + 61$
 - (C) $4 + 5 + 6 + \ldots + 61$
 - (D) $4 + 7 + 10 + \ldots + 61$
- 2. What is the remainder when $P(x) = -6x^3 2x^2 + 3x + 10$ is divided by x + 2?
 - (A) -44
 (B) -40
 (C) 40
 - (D) 44
- 3. What is the angle between the vectors $\underline{a} = \begin{bmatrix} 14\\5 \end{bmatrix}$ and $\underline{b} = \begin{bmatrix} 11\\10 \end{bmatrix}$, correct to the nearest degree?
 - $(A) 23^{\circ}$
 - (B) 28°
 - (C) 62°
 - (D) 67°
- 4. What is the value of $\lim_{\theta \to 0} \frac{\tan \theta}{2\theta}$?
 - (A) 0
 - (B) $\frac{1}{2}$
 - (C) 2
 - (D) The limit does not exist.

- 5. What is the natural domain of the function $f(x) = \sin^{-1} (1 x^2)$?
 - (A) $-\sqrt{2} \le x \le \sqrt{2}$ (B) $-1 \le x \le 1$ (C) $0 \le x \le 1$ (D) $0 \le x \le \sqrt{2}$

6. What is the exact value of $\int_1^2 \frac{dx}{\sqrt{4-x^2}}$?

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

7. What is the constant term in the binomial expansion of $\left(4x^2 - \frac{1}{x}\right)^9$?

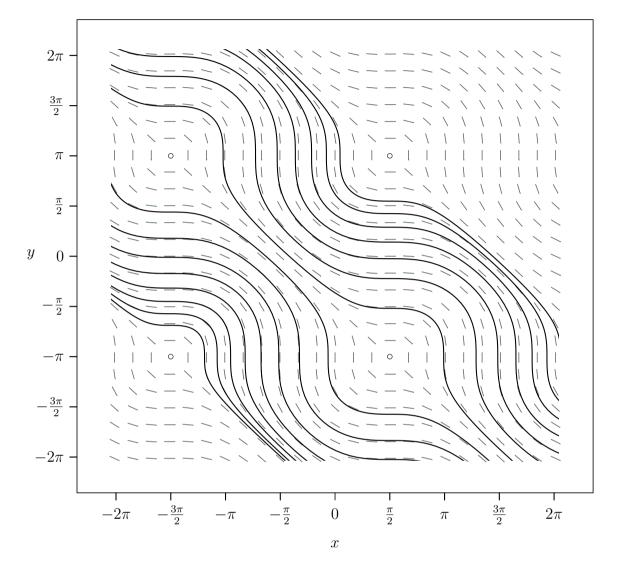
- (A) -344064
- (B) -5376
- (C) 84
- (D) 5376

8. The displacement, x, of a particle at time $t \ge 0$ is given by

 $x = 7\sin 3t + 24\cos 3t.$

What is the maximum velocity of the particle?

- (A) 25
- (B) 51
- (C) 75
- (D) 225



9. The diagram below shows the direction field (slope field) of a differential equation and some of the solution curves.

Which differential equation best matches this direction field?

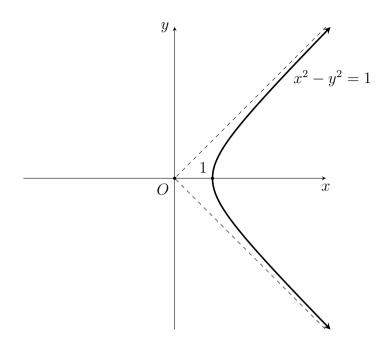
(A)
$$\frac{dy}{dx} = \frac{\sin x + 1}{\cos y + 1}$$

(B)
$$\frac{dy}{dx} = \frac{\sin x + 1}{\cos y - 1}$$

(C)
$$\frac{dy}{dx} = \frac{\sin x - 1}{\cos y + 1}$$

(D)
$$\frac{dy}{dx} = \frac{\sin x - 1}{\cos x - 1}$$

10.



The diagram above shows the right branch of the hyperbola $x^2 - y^2 = 1$. Three pairs of parametric equations are listed below:

$$\mathbf{I} \begin{cases} x = \sec t \\ y = \tan t \end{cases} \quad \text{for } -\frac{\pi}{2} < t < \frac{\pi}{2}.$$
$$\mathbf{II} \begin{cases} x = \sqrt{1+t^2} \\ y = t \end{cases} \quad \text{for } -\infty < t < \infty.$$
$$\mathbf{III} \begin{cases} x = t \\ y = \sqrt{t^2 - 1} \end{cases} \quad \text{for } 1 \le t < \infty.$$

Which of these pairs of equations give a correct representation of the curve shown in the diagram?

- (A) I and II only
- (B) I and III only
- (C) II and III only
- (D) I, II and III

End of Section I

The paper continues in the next section

Marks

2

1

2

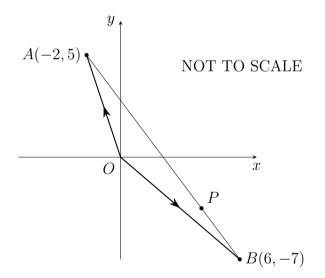
Section II

This section consists of long-answer questions. Marks may be awarded for reasoning and calculations. Marks may be lost for poor setting out or poor logic. Start each question in a new booklet.

QUESTION ELEVEN (15 marks) Start a new answer booklet.

(a) Solve $\frac{x}{x-3} \le 2$. 3

- (b) Find $\int \sin^2 5x \, dx$.
- (c)



The diagram above shows a Cartesian plane where the points A and B have the position vectors $\overrightarrow{OA} = -2i + 5j$ and $\overrightarrow{OB} = 6i - 7j$, respectively, and O is the origin.

- (i) Find \overrightarrow{AB} in component form.
- (ii) The point P lies on the interval AB with AP : PB = 3 : 1. Use vector methods to find the coordinates of P.
- (d) Use the substitution $t = \tan \frac{\theta}{2}$ to solve $\sin \theta + 2\cos \theta = 2$ for $0^{\circ} \le \theta \le 360^{\circ}$. Give 3 your answers correct to the nearest degree.

The question continues on the next page

1

2

QUESTION ELEVEN (Continued)

(e) A container of ice cream is stored in a freezer at a temperature of -18° C. Before serving, the ice cream is removed from the freezer and left on the kitchen bench at an ambient temperature of 22° C.

Let T be the temperature of the ice cream in degrees Celsius. Once the ice cream has been removed from the freezer, T increases according to the differential equation

$$\frac{dT}{dt} = k(22 - T),$$

where k is a positive constant and t is the number of minutes after the ice cream was removed from the freezer.

- (i) Given that $T = 22 Ae^{-kt}$ is a solution to the differential equation, determine the value of A.
- (ii) Twenty minutes after removal from the freezer, the temperature of the ice cream is -8° C. Determine the value of k. Give your answer correct to three significant figures.
- (iii) It is accepted that ice cream is most palatable when served at -12° C. How long should the ice cream have been left on the bench to reach this temperature before serving? Give your answer correct to the nearest minute.

Marks

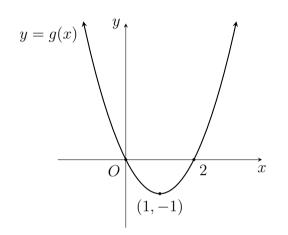
1

2

QUESTION TWELVE (15 marks) St

Start a new answer booklet.

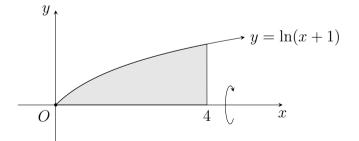
- (a) How many different ten-letter arrangements can be made using the letters of the word TABLECLOTH?
- (b) The diagram below shows the graph of the function y = g(x). This function has zeroes at x = 0 and x = 2 and a global minimum at (1, -1).



On separate axes, draw neat sketches of the functions listed below. Clearly indicate the location of any asymptotes, any maxima or minima, and any intercepts with the coordinate axes.

(i)
$$y = \frac{1}{g(x)}$$
(ii)
$$y = g(|x|)$$
(2)

(c) The region under the curve $y = \ln(x+1)$ for $0 \le x \le 4$ is shown in the diagram below. It is rotated about the x-axis to form a solid of revolution.



- (i) Let V be the volume of the solid of revolution. Write down a definite integral which, if evaluated, would give the exact value of V.
- (ii) Use the trapezoidal rule with three function values to estimate V. Give your answer correct to one decimal place.

The question continues on the next page

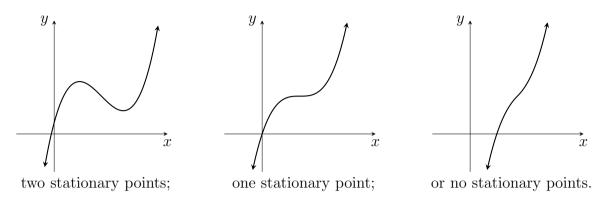
1

1

3

QUESTION TWELVE (Continued)

(d) A cubic function can have:



Consider the cubic function $f(x) = ax^3 + bx^2 + cx + d$, where a, b, c and d are real numbers and $a \neq 0$.

(i) Show that the x-coordinates of the stationary points of y = f(x) satisfy the 2 equation

$$x = \frac{-b \pm \sqrt{b^2 - 3ac}}{3a}$$

(ii) Give an example of a cubic function that has no stationary points.

- (e) Consider the sequence $T_n = 2n + 2^n$ for integers $n \ge 1$.
 - (i) Find the first three terms of the sequence.

(ii) Use mathematical induction to show that, for $n \ge 1$, $T_1 + T_2 + \ldots + T_n = n^2 + n - 2 + 2^{n+1}$.

Marks

2

2

2

3

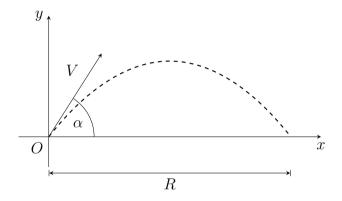
1

QUESTION THIRTEEN (15 marks)

Start a new answer booklet.

(a) Find
$$\frac{d}{dx} \left(\cos^{-1}(3x^2) \right)$$
. 2

- (b) Pupils completing Legal Studies for the NSW HSC are awarded an integer mark between zero and 100, inclusive. In the year 2021, a total of 10 935 pupils completed Legal Studies. What is the largest number of pupils that were guaranteed to receive the same mark?
- (c) The vectors \underline{y} and \underline{y} are perpendicular. If $|\underline{y}| = 8$ and $|\underline{y}| = 3$, evaluate $|\underline{y} 2\underline{y}|$.
- (d) The displacement of a projectile fired from the origin O has a horizontal component x and a vertical component y.



The equations of motion are

$$\begin{aligned} x &= Vt\cos\alpha, \\ y &= Vt\sin\alpha - 5t^2, \end{aligned}$$

where V is the initial speed in metres per second, α is the angle of projection as in the diagram, and t is the time in seconds. The range, R, is the total horizontal distance travelled by the projectile.

- (i) Derive an expression for R in terms of V and α .
- (ii) The maximum range for a given value of V is R_{max} . Show that R_{max} occurs when $\alpha = 45^{\circ}$ and obtain a fully simplified expression for it.
- (iii) Show that if the projectile is to hit a target 12 km away, it must be launched at a speed faster than the speed of sound in air, which is 343 m/s.
- (e) Solve the separable differential equation $\frac{dy}{dx} = x(y^2 + 4)$ if the solution passes through 3 the point (0,2). Express your solution as a function of x.

QUESTION FOURTEEN (15 marks)

Start a new answer booklet.

Marks

(a) The mass of a tyrannosaurid dinosaur as a function of its age can be modelled by a logistic equation of the form

$$M(t) = \frac{a}{1 + e^{-b(t-c)}} + k.$$

In this equation:

M is the mass of the dinosaur in kilograms;

t is the age of the dinosaur in years; and

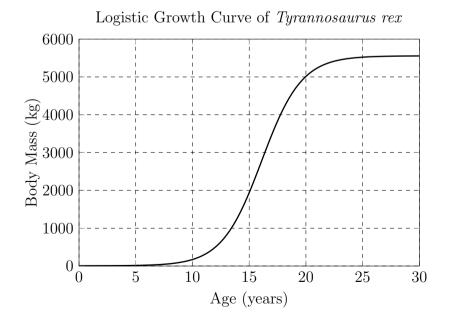
a, b, c and k are positive constants.

For the dinosaur *Tyrannosaurus rex* (T. *rex*), palæontologists have obtained estimates of the constants a, b, c and k, which are shown in the table below.

Constant	Value
a	5649
b	0.55
С	16.2
k	5

Erickson GM, Makovicky PJ, Currie PJ, Norell MA, Yerby SA, et al. (2004) Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430: 772–775.

The diagram below shows the growth curve of T. rex for the values given in the table.



The question continues on the next page

1

4

1

1

1

1

3

2

QUESTION FOURTEEN (Continued)

- (i) From the diagram of the *T. rex* growth curve, write down an approximate value 1 for the limiting mass.
- (ii) Show that the instantaneous growth rate, $G(t) = \frac{dM}{dt}$, is given by

$$G(t) = \frac{abe^{-b(t-c)}}{\left[1 + e^{-b(t-c)}\right]^2}.$$

- (iii) Show that G(t) has a maximum when t = c.
- (iv) Hence, or otherwise, determine the maximum growth rate of T. rex in kilograms per year predicted by the model. Give your answer correct to the nearest 10 kg/year.
- (b) The hyperbolic sine and cosine functions, $\sinh x$ and $\cosh x$, are defined as

$$\sinh x = \frac{1}{2} (e^x - e^{-x}),$$

 $\cosh x = \frac{1}{2} (e^x + e^{-x}).$

- (i) Show that $\frac{d}{dx}\sinh x = \cosh x$.
- (ii) Hence explain why $f(x) = \sinh x$ has an inverse function defined for all real x.
- (iii) Prove the identity $\cosh^2 x \sinh^2 x = 1$.
- (iv) Show that the inverse function of $f(x) = \sinh x$ is given by

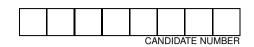
$$f^{-1}(x) = \ln\left(x + \sqrt{x^2 + 1}\right).$$

(v) Hence use the substitution $x = \sinh u$ to deduce that

$$\int \frac{1}{\sqrt{x^2 + 1}} \, dx = \ln\left(x + \sqrt{x^2 + 1}\right) + C.$$

FND	OF	PAPER	
	Or	I AI LIU	

SYDNEY GRAMMAR SCHOOL



	Question One
2022 Trial Examination	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
Form VI Mathematics Extension 1	Question Two
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
Monday 15th August 2022	Question Three
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
	Question Four
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
• Fill in the circle completely.	Question Five
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
• Each question has only one correct answer.	Question Six
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
	Question Seven
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
	Question Eight
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
	Question Nine
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$
	Question Ten
	$A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

Mathematics Extension 1 Trial Solutions

Section I

(1) The first term in the sequence is 4, the last is 61 and the common difference is 3. Answer: D

(2)

$$P(-2) = -6(-2)^3 - 2(-2)^2 + 3(-2) + 10$$

= 48 - 8 - 6 + 10
= 44

Answer: D

(3) If θ is the angle between the vectors then

$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$

$$= \frac{14 \times 11 + 5 \times 10}{\sqrt{14^2 + 5^2}\sqrt{11^2 + 10^2}}$$

$$= \frac{204}{\sqrt{221}\sqrt{221}}$$

$$= \frac{204}{221}$$

$$\therefore \theta = \cos^{-1}\left(\frac{204}{221}\right)$$

$$= 22.61986$$

Answer: A

(4)

$$\lim_{\theta \to 0} \frac{\tan \theta}{2\theta} = \frac{1}{2} \lim_{\theta \to 0} \frac{\tan \theta}{\theta}$$
$$= \frac{1}{2} \times 1$$

Answer: B

(5) The domain is given by

$$-1 \le 1 - x^2 \le 1$$
$$-2 \le -x^2 \le 0$$
$$0 \le x^2 \le 2$$
$$\therefore -\sqrt{2} \le x \le \sqrt{2}$$

Answer: A

(6)

$$\int_{1}^{2} \frac{dx}{\sqrt{4 - x^{2}}} = \left[\sin^{-1}\left(\frac{x}{2}\right)\right]_{1}^{2}$$
$$= \sin^{-1}1 - \sin^{-1}\frac{1}{2}$$
$$= \frac{\pi}{2} - \frac{\pi}{6}$$
$$= \frac{\pi}{3}$$

Answer: C

(7) The nth term in the binomial expansion is

$${}^{9}C_{n} \left(4x^{2}\right)^{n} \left(\frac{-1}{x}\right)^{9-n} = {}^{9}C_{n}4^{n} \left(-1\right)^{9-n} x^{2n-(9-n)}$$
$$= {}^{9}C_{n}4^{n} \left(-1\right)^{9-n} x^{3n-9}$$

Thus the constant term is when 3n - 9 = 0. That is, when n = 3. In this case, the coefficient is

$${}^{9}C_{3} \times 4^{3} (-1)^{6} = 84 \times 4^{3} = 5376$$

Answer: D

(8) Using the auxilliary angle method,

$$\begin{aligned} x &= 7\sin 3t + 24\cos 3t \\ &= \sqrt{7^2 + 24^2} \left(\frac{7}{\sqrt{7^2 + 24^2}} \sin 3t + \frac{24}{\sqrt{7^2 + 24^2}} \cos 3t \right) \\ &= 25 \left(\frac{7}{25} \sin 3t + \frac{24}{25} \cos 3t \right) \\ &= 25\sin(3t + \theta), \end{aligned}$$

where $\theta = \sin^{-1} \frac{24}{25}$.

Differentiating with respect to time to find the velocity,

$$v = 75\cos(3t + \theta),$$

The maximum velocity is 75.

Answer: C

(9) Note that the tangents are horizontal along the lines $x = \frac{\pi}{2}$ and $x = \frac{-3\pi}{2}$. This is consistent with a numerator of $\sin x - 1$, i.e., (C) or (D). Secondly, the tangents are vertical along the lines $y = \pm \pi$, which is consistent with a denominator of $\cos y + 1$. That is, the answer is (C).

Answer: C

(10) I and II parameterize the curve correctly; III only yields positive y values, and thus only gives the top half of the curve.

Answer: A

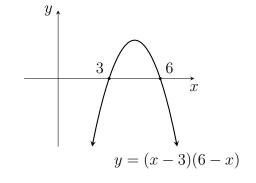
Answer Table		
1	D	
2	D	
3	А	
4	В	
5	А	
6	С	
7	D	
8	С	
9	С	
10	А	

Section II

QUESTION ELEVEN (15 Marks)

(a) Firstly note that $x \neq 3$. Multiplying both sides by $(x - 3)^2$,

$$(x-3)^2 \times \frac{x}{x-3} \le 2 \times (x-3)^2$$
$$x(x-3) \le 2(x-3)^2$$
$$x(x-3) - 2(x-3)^2 \le 0$$
$$(x-3)[x-2(x-3)] \le 0$$
$$(x-3)(6-x) \le 0$$



The solution is x < 3 or $x \ge 6$.

(b) From the reference sheet,

$$\int \sin^2 5x \, dx = \int \frac{1}{2} \left(1 - \cos 10x \right) \, dx$$
$$= \frac{1}{2} \left(x - \frac{1}{10} \sin 10x \right) + C$$
$$= \frac{x}{2} - \frac{\sin 10x}{20} + C$$

(c) (i)

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
$$= (6\underline{i} - 7\underline{j}) - (-2\underline{i} + 5\underline{j})$$
$$= 8\underline{i} - 12\underline{j}$$

(ii)

$$\overrightarrow{OP} = \overrightarrow{OA} + \frac{3}{4}\overrightarrow{AB}$$
$$= -2\underline{i} + 5\underline{j} + \frac{3}{4}(8\underline{i} - 12\underline{j})$$
$$= 4\underline{i} - 4\underline{j}$$

The coordinates of P are (4, -4).

(d) If $t = \tan \frac{\theta}{2}$, then, from the reference sheet, $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$. Thus

$$\frac{2t}{1+t^2} + \frac{2(1-t^2)}{1+t^2} = 2$$

$$2t + 2(1-t^2) = 2(1+-t^2)$$

$$2t + 2 - 2t^2 = 2 + 2t^2$$

$$4t^2 - 2t = 0$$

$$2t(2t-1) = 0$$

So t = 0 or $t = \frac{1}{2}$. If t = 0, $\frac{\theta}{2} = 0^{\circ}, 180^{\circ}$ $\theta = 0^{\circ}, 360^{\circ}$ If $t = \frac{1}{2}$, $\frac{\theta}{2} = 26.565 \dots^{\circ}$ $\theta = 53^{\circ} \quad \text{(to nearest degree)}$

Υ.

Thus the solutions are $\theta = 0^{\circ}, 53^{\circ}, 360^{\circ}$.

NOTE: this is the rounding question.

(e) (i) When t = 0, T = -18, so

$$-18 = 22 - Ae^{0 \times k}$$
$$\therefore A = 40$$

(ii) When t = 20, T = -8, so

$$-8 = 22 - 40e^{-20k}$$

$$40e^{-20k} = 30$$

$$e^{-20k} = 0.75$$

$$k = -\frac{\ln(0.75)}{20}$$

$$\approx 0.0144 \text{ (to 3 sig. fig.)}$$

(iii) If T = -12,

$$-12 = 22 - 40e^{-kt}$$

$$40e^{-kt} = 34$$

$$e^{-kt} = 0.85$$

$$t = -\frac{\ln(0.85)}{k}$$

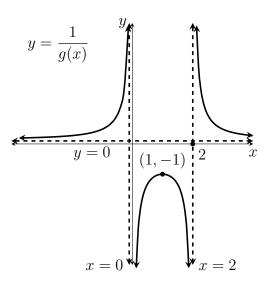
$$\approx 11 \text{ min (to nearest minute.)}$$

QUESTION TWELVE (15 Marks)

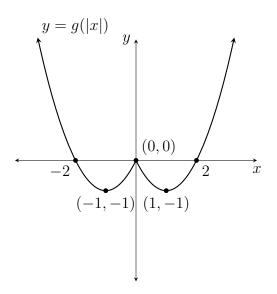
(a) There are two L's and two T's, so the number of arrangements is given by

$$\frac{10!}{2! \times 2!} = 907\,200$$

(b) (i)



(ii)



(c) (i) The integral is

$$V = \int_0^4 \pi \left[\ln(x+1) \right]^2 \, dx$$

(ii) Let $f(x) = \pi [\ln(x+1)]^2$, and note that h = 2.

$$V \approx \frac{h}{2} \left[f(0) + 2f(2) + f(4) \right]$$

= $\frac{2}{2} \left[\pi (\ln(1))^2 + 2\pi (\ln(3))^2 + \pi (\ln(5))^2 \right]$
= $\pi \left[2 (\ln(3))^2 + (\ln(5))^2 \right]$
= 15.7 (1 d.p.)

(d) (i)

$$f(x) = ax^3 + bx^2 + cx + d$$
$$f'(x) = 3ax^2 + 2bx + c$$

If f'(x) = 0, $3ax^2 + 2bx + c = 0$. Applying the quadratic formula,

$$x = \frac{-2b \pm \sqrt{(2b)^2 - 4(3a)(c)}}{6a}$$

= $\frac{-2b \pm \sqrt{4b^2 - 12ac}}{6a}$
= $\frac{-2b \pm 2\sqrt{b^2 - 3ac}}{6a}$
= $\frac{-b \pm \sqrt{b^2 - 3ac}}{3a}$,

as required.

(ii) If the cubic has no stationary points then $b^2 - 3ac < 0$. For instance, the values b = 0, a = 1, c = 1 will work and thus the cubic $y = x^3 + x$ has no stationary points.

$$T_1 = 2(1) + 2^1 = 4$$

$$T_2 = 2(2) + 2^2 = 8$$

$$T_3 = 2(3) + 2^3 = 14$$

(ii) RTP: $T_1 + T_2 + T_3 + \dots + T_n = n^2 + n - 2 + 2^{n+1}$ for $n \ge 1$. (*) For n = 1,

$$LHS(*) = T_1$$

= 4 from part (i)
 $RHS(*) = 1^2 + 1 - 2 + 2^{1+1}$
= 4

Thus (*) is true for n = 1.

Suppose that (*) is true for an arbitrary positive integer, n = k.

 $T_1 + T_2 + T_3 + \dots + T_k = k^2 + k - 2 + 2^{k+1}$

Then, by the inductive hypothesis,

$$T_1 + T_2 + T_3 + \dots + T_k + T_{k+1} = (k^2 + k - 2 + 2^{k+1}) + T_{k+1}$$

Since $T_{k+1} = 2(k+1) + 2^{k+1}$,

$$\begin{aligned} T_1 + T_2 + T_3 + \dots + T_{k+1} &= k^2 + k - 2 + 2^{k+1} + 2(k+1) + 2^{k+1} \\ &= k^2 + k - 2 + 2k + 2 + 2 \times 2^{k+1} \\ &= (k^2 + 2k + 1) + (k+1) - 2 + 2^{(k+1)+1} \\ &= (k+1)^2 + (k+1) - 2 + 2^{(k+1)+1} \end{aligned}$$

So if (*) is true for k, it is true for k + 1, as well. Hence the result follows by mathematical induction.

QUESTION THIRTEEN (15 Marks)

(a)

$$\frac{d}{dx} \left(\cos^{-1}(3x^2) \right) = -\frac{1}{\sqrt{1 - (3x^2)^2}} \times 6x$$
$$= -\frac{6x}{\sqrt{1 - 9x^4}}$$

(b) The pupils are the "pigeons" and the possible marks are the "pigeonholes". There are 101 different marks that can be obtained (0, 1, 2, 3..., 100). Now

 $10\,935 = 108 \times 101 + 27$

Thus, by the PHP, there must be at least 109 Legal Studies pupils who received the same mark.

(c)

$$|\underbrace{u} - 2\underbrace{v}|^2 = (\underbrace{u} - 2\underbrace{v}) \cdot (\underbrace{u} - 2\underbrace{v})$$
$$= \underbrace{u} \cdot \underbrace{u} - 4\underbrace{u} \cdot \underbrace{v} + 2\underbrace{v} \cdot \underbrace{v}$$

Since \underline{y} and \underline{y} are perpendicular, $\underline{y} \cdot \underline{y} = 0$. Thus

$$|\underline{u} - 2\underline{v}|^2 = |\underline{u}|^2 + 4|\underline{v}|^2$$

= 64 + 4 × 9
= 100
$$\therefore |\underline{u} - 2\underline{v}| = 10$$

(d) (i) If y = 0, then

$$Vt\sin\alpha - 5t^2 = 0$$
$$t(V\sin\alpha - 5t) = 0$$

So the time of flight is $t = \frac{V \sin \alpha}{5}$. Substituting $t = \frac{V \sin \alpha}{5}$ into x,

$$R = V \cos \alpha \times \frac{V \sin \alpha}{5}$$
$$= \frac{V^2 \sin \alpha \cos \alpha}{5}$$

(ii) Using the double angle formula,

$$R = \frac{V^2 \times 2\sin\alpha\cos\alpha}{10}$$
$$= \frac{V^2 \sin 2\alpha}{10}$$

The maximum value of R is when $\sin 2\alpha = 1$, which occurs when $2\alpha = 90^{\circ}$, so $\alpha = 45^{\circ}$, and $R_{max} = \frac{V^2}{10}$.

(iii) If $R_{max} = 12\,000$,

$$12\,000 = \frac{V^2}{10}$$
$$V^2 = 120\,000$$
$$\therefore V = \sqrt{120\,000}$$
$$\approx 346.4102 > 343$$

(e)

$$\frac{dy}{dx} = x(y^2 + 4)$$
$$\int \frac{1}{y^2 + 4} dy = \int x dx$$
$$\frac{1}{2} \tan^{-1} \left(\frac{y}{2}\right) = \frac{x^2}{2} + C$$
$$\tan^{-1} \left(\frac{y}{2}\right) = x^2 + D$$

Since y = 2 when x = 0,

$$\tan^{-1}(1) = D$$

$$\therefore D = \frac{\pi}{4}$$

$$\tan^{-1}\left(\frac{y}{2}\right) = x^2 + \frac{\pi}{4}$$

$$y = 2\tan\left(x^2 + \frac{\pi}{4}\right)$$

QUESTION FOURTEEN (15 Marks)

(a) (i) From the graph, the limiting mass is approximately 5500 kg.(ii)

$$M = \frac{a}{1 + e^{-b(t-c)}} + k$$

= $a \left(1 + e^{-b(t-c)}\right)^{-1} + k$
 $\therefore G(t) = \frac{dM}{dt}$
= $-a(1 + e^{-b(t-c)})^{-2} \times -be^{-b(t-c)}$
= $\frac{abe^{-b(t-c)}}{[1 + e^{-b(t-c)}]^2}$

(iii)

$$G(t) = \frac{abe^{-b(t-c)}}{[1+e^{-b(t-c)}]^2}$$

$$\therefore u = abe^{-b(t-c)}, \qquad u' = -ab^2 e^{-b(t-c)}$$

$$v = (1+e^{-b(t-c)})^2, \qquad v' = -2be^{-b(t-c)} (1+e^{-b(t-c)})$$

So

$$\begin{split} \frac{dG}{dt} &= \frac{u'v - uv'}{v^2} \\ &= \frac{-ab^2 e^{-b(t-c)}(1 + e^{-b(t-c)})^2 - abe^{-b(t-c)} \times -2be^{-b(t-c)}\left(1 + e^{-b(t-c)}\right)}{[1 + e^{-b(t-c)}]^4} \\ &= \frac{\left(1 + e^{-b(t-c)}\right)\left[-ab^2 e^{-b(t-c)}(1 + e^{-b(t-c)}) + 2ab^2(e^{-b(t-c)})^2\right]}{[1 + e^{-b(t-c)}]^4} \\ &= \frac{ab^2 e^{-b(t-c)}\left[-(1 + e^{-b(t-c)}) + 2e^{-b(t-c)}\right]}{[1 + e^{-b(t-c)}]^3} \\ &= \frac{ab^2 e^{-b(t-c)}\left[e^{-b(t-c)} - 1\right]}{[1 + e^{-b(t-c)}]^3} \end{split}$$

If $\frac{dG}{dt} = 0$, then $e^{-b(t-c)} - 1 = 0$, which implies that t = c. Note that the factors $ab^2e^{-b(t-c)}$ and $[1 + e^{-b(t-c)}]^3$ are both positive. Thus the sign of $\frac{dG}{dt}$ changes only if $[e^{-b(t-c)} - 1]$ changes sign. If t < c, then -b(t-c) > 0, thus $e^{-b(t-c)} - 1 > 0$ and so G'(t) > 0. Similarly, if t > c then $e^{-b(t-c)} - 1 < 0$ and so G'(t) < 0. Hence G(t) has a global maximum when t = c. (iv)

$$G(c) = \frac{abe^{-b(c-c)}}{[1 + e^{-b(c-c)}]^2}$$

= $\frac{ab}{4}$
= $\frac{5649 \times 0.55}{4}$
= 776.7375
 $\approx 780 \text{ kg/year}$

(b) (i)

$$\frac{d}{dx}\sinh x = \frac{d}{dx}\left(\frac{1}{2}(e^x - e^{-x})\right)$$
$$= \frac{1}{2}(e^x - (-1) \times e^{-x})$$
$$= \frac{1}{2}(e^x + e^{-x})$$
$$= \cosh x$$

(ii) Since $\frac{d}{dx} \sinh x = \cosh x$ the $y = \sinh x$ is increasing for all real x and thus has an inverse function.

$$\cosh^2 x - \sinh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 - \left[\frac{1}{2}(e^x - e^{-x})\right]^2$$
$$= \frac{1}{4}(e^{2x} + 2e^x \times e^{-x} + e^{-2x}) - \frac{1}{4}(e^{2x} - 2e^x \times e^{-x} + e^{-2x})$$
$$= \frac{1}{4}(e^{2x} + 2 + e^{-2x}) - \frac{1}{4}(e^{2x} - 2 + e^{-2x})$$
$$= 1$$

(iv) If $x = \sinh y$, then

$$x = \frac{1}{2}(e^y - e^{-y})$$
$$2x = e^y - \frac{1}{e^y}$$

Let $e^y = u$, then

$$2x = u - \frac{1}{u}$$
$$2ux = u^2 - 1$$
$$u^2 - 2ux + x^2 = x^2 + 1$$
$$(u - x)^2 = x^2 + 1$$
$$u - x = \pm \sqrt{x^2 + 1}$$
$$u = x \pm \sqrt{x^2 + 1}$$

However, since $u = e^y > 0$, we take the positive square root only, and thus

$$e^{y} = x + \sqrt{x^{2} + 1}$$
$$y = \ln\left(x + \sqrt{x^{2} + 1}\right)$$
$$\therefore f^{-1}(x) = \ln\left(x + \sqrt{x^{2} + 1}\right)$$

NOTE: this can also be proven from the definition of an inverse function, but both parts need to be shown. That is, both $f \circ f^{-1}(x) = x$ and $f^{-1} \circ f(x) = x$ must be clearly demonstrated.

(v) If $x = \sinh u$ then

$$\frac{dx}{du} = \cosh u$$
$$\therefore dx = \cosh u \, du$$

 \mathbf{SO}

$$\int \frac{1}{\sqrt{x^2 + 1}} dx = \int \frac{1}{\sqrt{1 + \sinh^2 u}} \times \cosh u \, du$$

= $\int \frac{1}{\sqrt{\cosh^2 u}} \times \cosh u \, du$ (from (b)(iii))
= $\int 1 \, du$ (Note that $\cosh u > 0$ for all real u)
= $u + C$

If $x = \sinh u$, then $u = \sinh^{-1} x$. From b(iv), $\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right)$. Thus

$$\int \frac{1}{\sqrt{x^2 + 1}} \, dx = \ln\left(x + \sqrt{x^2 + 1}\right) + C,$$

as required.